

Unit Outline (Higher Education)

Institute / School:	Institute of Innovation, Science, and Sustainability				
Unit Title:	MICRO-GRID AND ENERGY STORAGE SYSTEMS				
Unit ID:	ENGIN5102				
Credit Points:	15.00				
Prerequisite(s):	Nil				
Co-requisite(s):	Nil				
Exclusion(s):	Nil				
ASCED:	031301				

Description of the Unit:

This unit provides an in-depth knowledge and understandings of micro-grid and smart-grid technologies along with their design and implementation strategies. The unit further introduces energy storage systems and provides a broad understanding and appreciation of the scientific principles that underpin the operation of such systems.

Grade Scheme: Graded (HD, D, C, P, MF, F, XF)

Work Experience:

No work experience: Student is not undertaking work experience in industry.

Placement Component: No

Supplementary Assessment: Yes

Where supplementary assessment is available a student must have failed overall in the Unit but gained a final mark of 45 per cent or above, has completed all major assessment tasks (including all sub-components where a task has multiple parts) as specified in the Unit Description and is not eligible for any other form of supplementary assessment

Course Level:

Level of Unit in Course	AQF Level of Course					
	5	6	7	8	9	10
Introductory						
Intermediate						
Advanced					V	

Unit Outline (Higher Education) ENGIN5102 MICRO-GRID AND ENERGY STORAGE SYSTEMS

Learning Outcomes:

Knowledge:

- **K1.** Identify the main components of a micro-grid and discern the differences between micro-grid and smart-grid systems.
- **K2.** Recognise the key standards and salient operational characteristics of micro-grid and smart-grid systems.
- **K3.** Explain the scientific and conceptual principles underpinning the operation of energy storage systems and key characteristics which inform their selection for use.

Skills:

- **S1.** Design micro-grids and smart-grids to meet specified criteria and performance standards.
- **S2.** Conduct fault analysis specific to micro-grids and smart-grids.
- **S3.** Evaluate and assess solutions to problems associated with a variety of energy storage systems in microgrids.

Application of knowledge and skills:

- **A1.** Apply industry standard software analysis tools to simulate and study characteristics and behaviour of micro-grids and smart-grids.
- **A2.** Interpret and appraise different challenges associated with micro-grids and smart-grids.
- **A3.** Develop and analyse the key objectives and applications of energy storage in electical networks.

Unit Content:

Topics may include:

- Introduction to micro-grid
- Micro-grid components, standards, applications, operations
- Use of mircro-grid as smart-grid
- Smart-grid standards, control, communication, cyber security and energy management
- Smart metering
- Energy storage systems background, application and objectives
- Overview and study of different energy storage systems which can include, electrical, chemical, mechanical, electrochemical, thermochemical, thermomechanical, etc.

Learning Task and Assessment:

Learning Outcomes Assessed	Assessment Tasks	Assessment Type	Weighting
K1, K2, S1, S3, A2, A3	Relevant tasks and problems to enforce understanding of the students and help in gradual development of knowledge and skills throughout the unit.	assignments / quizzes	10% - 30%
K1 - K3, S1 - S3, A1 - A3	Experimental/simulation work to verify students' ability to apply knowledge and skills acquired in the unit.	report	10% - 30%
K1-K3, S1-S3, A2	The test or exam tests analytical and critical thinking and a general understanding of the unit materials.	test or exam	40% - 60%

Alignment to the Minimum Co-Operative Standards (MiCS)

The Minimum Co-Operative Standards (MiCS) are an integral part of the Co-Operative University Model. Seven

Unit Outline (Higher Education) ENGIN5102 MICRO-GRID AND ENERGY STORAGE SYSTEMS

criteria inform the MiCS alignment at a Course level. Although Units must undertake MiCS mapping, there is NO expectation that Units will meet all seven criteria. The criteria are as follows:

- 1. Co-design with industry and students
- 2. Co-develop with industry and students
- 3. Co-deliver with industry
- 4. FedTASK alignment
- 5. Workplace learning and career preparation
- 6. Authentic assessment
- 7. Industry-link/Industry facing experience

MiCS Course level reporting highlights how each Course embraces the principles and practices associated with the Co-Operative Model. Evidence of Course alignment with the MiCS, can be captured in the Course Modification Form.

No

MICS Mapping has been undertaken for this Unit

Date:

Adopted Reference Style:

Other (IEEE)

Refer to the library website for more information

Fed Cite - referencing tool